In ΔABC,LM∥AB
∴ALLC=BMMC [By Basic Proportionality Theorem]
⇒x−32x−(x−3)=x−2(2x+3)−(x−2)
⇒x−3x+3=x−2x+5
⇒(x−3)×(x+5)=(x−2)×(x+3)
⇒x2+2x−15=x2+x−6
⇒x=9
If LM ∥ AB, AL=x-3, AC=2x, BM=x-2, BC=2x+3. What is value of AC?
__
In the given figure LM||AB. If AL =x−3, AC =2x, BM=x−2 and BC =2x+3, find the value of x.
If LM∥AB,AL=x−3,AC=2x,BM=x−2,BC=2x+3. What is value of AC ?
In fig., LM ∥ AB. If AL = x - 3, AC = 2x, BM = x - 2 and BC = 2x + 3, Find the value of x.