In the following figure, OB and OC are the angle bisectors. Find ∠BOC
110∘
In ΔABC, ∠ABC=∠ACB
So, (∠ABC)2=(∠ABC)2
∠BOC=∠BCO
Therefore, ΔBOC is also isosceles.
Also, ∠A+∠ABC+∠ACB=180∘
Let ∠ABC=∠ACB=x
So, ∠A+x+x=180∘
2x=180∘−∠A=180∘−40∘=140∘
x=70∘
∠OBC=∠OCB=70∘2=35∘
∠BOC=180∘−(∠OBC+∠OCB)=180∘−70∘=110∘