In the following figure, PQ and PR are tangents to the circle, with centre O. If ∠QPR=60∘. Select the statements that are true,
∠QOR=120∘
∠OQR=30∘
∠QSR=60∘
Join QR
Now, PQ and PR the tangents to the circle
PQ = PR and ∠QPR=60∘
(i) In quad ORPQ,OQ⊥OP,OR⊥RP
∴ ∠OQP=90∘,∠ORP=90∘ and ∠QPR=60∘
∠QOR=360∘−(90∘+90∘+60∘)=360∘−240∘=120∘
(ii) InΔQOR,OQ=OR (radii of the same circle)
∴∠OQR=∠QRO .....(i)
But ∠OQR+∠QRO+∠QOR=180∘
∠OQR+∠QEO+120∘=180∘
∠OQR+∠QRO=180∘−120∘=60∘
∴ ∠OQR+∠OQR=60∘
[From (i)]
2 ∠OQR=60∘
∴∠OQR=30∘
(ii) Arc QR subtends ∠QOR at the centre and ∠QSR at the remaining part of the circle.
∴∠QSR=12∠QOR=12×120∘=60∘