In the following figure, PQ and PR are tangents to the circle, with centre O. If ∠QPR=60o, calculate :
(i)∠QOR,
(ii)∠OQR,
(iii)∠QSR,
(i) In the figure form ,
PQ=PR,
Hence it made an isosceles triangle
PQR= 180
2Q=180-60
2Q=120
Q=120/2
Q=60
And,
Angle OQP=90
In which RQP=60
So,
angle OQR=90-60=30
Hence, the angle is 30
∠QOR=1800−2(300)
∠QOR=1200
(ii) ∠OQR=300 from(i)
(iii) ∠QSR=0.5∗∠QOR
∠QSR=600