The correct option is C −1
Given, △ABC, A perpendicular from B on AC, let it cut AC at D, such that∠BDA=∠BDC=90∘
AD=3
BD=4
BC=12
In △ABD,
AB2=BD2+AD2
AB2=32+42
AB=5
In △BCD
BC2=CD2+BD2
122=CD2+42
CD2=128
CD=8√2
Now, tan2A−sec2A=(PB)2−(HB)2=(43)2−(53)2
= 169−259
= 16−259
= −99
= −1