In
△s AXY and ABC,
∠XAY=∠BAC (Common angle)
∠AXY=∠ABC (Corresponding angles for parallel lines, XY II BC)
∠AYX=∠ACB (Corresponding angles for parallel lines, XY II BC)
Thus, △AXY∼△ABC
Hence, AXAB=XYBC (Using similar triangle property)
AXAX+XB=XY18
99+4.5=XY18
XY=18×913.5
XY=12