Solution (i):ABCD is a rectangle. We know that the diagonals of the rectangle are equal and bisect each other.
⟹BD=AC and AO=BO=OC=OD
In △ABO,
∠OAB=∠OBA=50∘ ---Angles opposite to the equal sides in a triangle are equal.
In △AOB,
∠AOB+∠OAB+∠OBA=180∘ ---sum of interior angles of a triangle
∴∠AOB=x=180∘−50∘−50∘=80∘
Solution (ii):ABCD is a rectangle. We know that the diagonals of the rectangle are equal and bisect each other.
⟹BD=AC and AO=BO=OC=OD
∠OCD+∠DCE=180∘---Angles on a straight line
∠ODC=180∘−146∘=34∘
In △DOC,
∠ODC=∠OCD=34∘ ---Angles opposite to the equal sides in a triangle are equal.
In △DOC,
∠CDO+∠DCO+∠DOC=180∘ ---sum of interior angles of a triangle
∴∠DOC=180∘−34∘−34∘=112∘
∠DOC=∠AOB=x=112∘ ---Vertically Opposite angles
∠DCO=∠OAB=y=34∘ ---Alternate angles
Solution (iii):
ABCD is a Square
∠ABC=∠BCD=∠CDA=∠DAB=90∘ ---interior angles of a square are equal to 90∘
BCE is an equilateral triangle
∠EBC=∠BCE=∠BEC=60∘
∠ECD=∠BCD+∠BCE=90∘+60∘=150∘
In △CDE
CE=CD ⟹∠CED=∠CDE---Angles opposite to the equal sides in a triangle are equal.
∠CDE+∠CED+∠DCE=180∘ ---sum of interior angles of a triangle
2∠CED=180∘−150∘=30∘
∠CED=15∘
Therefore, ∠BEC=∠BED+∠CED
60∘=x+15∘
x=60∘−15∘=45∘
Solution (iii):
BCE is an equilateral triangle
∠EBC=∠BCE=∠BEC=60∘
ABCD is a Square
∠ABC=∠BCD=∠CDA=∠DAB=90∘ ---interior angles of a square are equal to 90∘
∠BCD=∠ECD+∠ECB=90∘
∠ECD=90∘−60∘=30∘
In △DEC,
CE=CD ⟹∠CED=∠CDE=y---Angles opposite to the equal sides in a triangle are equal.
∠CDE+∠DCE+∠DEC=180∘ ---sum of interior angles of a triangle
∴y+y=180∘−30∘=150∘
y=75∘
∠ADC=∠ADE+∠EDC=90∘
75∘+x=90∘
x=15∘
y+z+∠CEB=360∘ ---Central Angle measures 360∘
z=360∘−75∘−60∘=225∘
Solution (iv):
∠ORS+∠SRT=180∘---Angles on a straight line
∠ORS=180∘−152∘=28∘
y=90∘ ---Diagonals of a Rhombus are orthogonal/perpendicular to each other
In △ORS,
∠OSR+∠SOR+∠ORS=180∘ ---sum of interior angles of a triangle
∠OSR=180∘−90∘−28∘=62∘
∠OSR=∠OQP=x=62∘ ---Alternate angles
∠SRO=∠OPQ=28∘ ---Alternate angles
z=∠OPQ=28∘ ---Diagonal bisects the angle at vertices, in Rhombus