In the following integral, th contour C encloses the points 2πj and −2πj.
−12π∮Csinz(z−2πj)3dz
The value of the integral is
Method I:
Let f(z)=sinz(z−2πj)2
So poles are z=2πj (poles of order 3)
R=Resf(z)(z=2πj)Diagram in equation
(∵sinθ=eiθ−e−iθ2i)
=eiπ−e−iπ−4j
∵ Pole lies inside′c′ so by C - R - T
−12π∮sinz(z−2πj)3dz=−12π∮cf(z)dz
=−12π[2πi(R)]
=−12π[2πi(e−2π−e2π−4j)]=e−2π−e2π4
=−133.87
Method II:
I=−12π∮Csinz(z−j2π)3dz
Using cauchy's integral formula;
I=−12π×j2πf′′(j2π)2!
Let f(z)=sinz
f′(z)=cosz
f′′(z)=−sinz
∴ at z=j2π;f′(z=j2π)=−sin(j2π)
⇒I=−12π×j2π×−sin(j2π)2!
=−133.87