Given,
tanα=512
Let α=∠A
We know that,
tanα=opposite Sideadjacent Side
Consider the figure above,
From Pythagoras theorem,
AC2=AB2+AC2
AC2=122+52
AC2=144+25=169AC=13
sinα=513
cosα=1213
AC=13$\cos\alpha=\dfrac{adjacent Side}{Hypotenuse}=\dfrac{12}{13}$
cscα=1sinα=135
secα=1cosα=1312
cotα=1tanα=125