Given
f(x)=x3+13x2+32x+20 and one zero is −2
(x+2) will be factor of f(x)
Now, dividing f(x) by x+2
x2+11x+10x+2)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯x3+13x2+32x+2_0x3+2x2−−____________________11x2+32x+2011x2+22x−−_____________________10x+2010x+20−−______________________0
Thus f(x)=(x+2)(x2+11x+10)
=(x+2)[x2+10x+x+10]
=(x+2)[x(x+10)+1(x+10)]
=(x+2)(x+10)(x+1)
Nowe, other zeroes of polynomial
If x+10=0 then x=−10
or x+1=0 then x=−1
Thus, other zeroes of polynomial are −10,−1