1) (x2+xy)dy–(x2+y2)dx
dydx=x2+y2x2+xy=1+(yx)21+(yx)
u=yx
dydx=1x(dydx)−yx2=1xdydx−(ux)
(dudx+ux)x=dydx
(xdudx+4)=1+421+4
xdudx=1+421+4−u=1+42−4−421+4
xdudx=(1−41+4)
⇒(1+41−4)du=dxx
∫−4−11−4dx=−∫dxx
=∫−4+1−1−11−4du=−∫dxx
=∫(1−21−4)du=−∫dxx
u+2ln(1−y)=−ln(x)+c
⇒u+2ln(1−4)=−ln(x)+c
⇒u=yx
⇒yx=2ln(1−yx)=−ln(x)+c
⇒y+2xln(1−yx)=−xln(x)+xc
2) y1=x+yx
y1=1+yx
yx=u⇒(dydx)=4+xdudx
xdudx=1⇒∫du=∫dxx
u=ln(x)+c
yx=ln(x)+c⇒y=xln(x)+cx
3) wrong equation
4) (x2+y2)dx+2xydy=0
dydx=−(x2+y2)2xy
dydx=−(1+(yx)2)2(yx)
yx=u⇒dydx=u=xdudx
u=xdudx=−(1+4224
xdudx=−(1+42)24–4=−1−42−24224
xdudx=−1−34224
∫241+342du=−∫dxx
∫dt1+3t=−∫dxx
13ln(1+3t)=−ln(x)+ln(c)
13ln(1+3t)=+ln(Cx)
13ln(1+3x2)=ln(cx)
(1+3x2)1/3=(Cx)
5) x2dydx=x2−2y2+xy
dydx=1−2(yx)2+(yx)
yx=4⇒dydx=4+xdydx
4+xdydx=1−2y2+4
xdydx=1−242+0
∫dy1−242=∫dxx
∫du1−(√24)2=∫dxx
√24=+7√2du=d+
⇒1√2∫d+1−+2=∫dxx
=1√2[∫(1/21−++(1/2)1+1)dt]=ln(x)+c
112[−12ln(1−+)+12ln(1+1)]=ln(x)+c
112[−12ln(1−42)+12ln(1+42)]=ln(x)+c