wiz-icon
MyQuestionIcon
MyQuestionIcon
21
You visited us 21 times! Enjoying our articles? Unlock Full Access!
Question

In the following, show that the given differential equation is homogeneous and solve each of them.
1. (x2+xy)dy=(x2+y2)dx
2. y=x+yx
3. (xy)dy(x+y)dx=0
4. (x2+y2)dx+2xydy=0
5. x2dydx=x22y2+xy
6. xdy.ydx=x2+y2dx
7. {xcos(yx)+ysin(yx)}ydx={ysin(yx)xcos(yx)}xdy
8. xdydxy+xsin(yx)=0
9. ydx+xlog(yx)dy2xdy=0

Open in App
Solution

1) (x2+xy)dy(x2+y2)dx

dydx=x2+y2x2+xy=1+(yx)21+(yx)

u=yx

dydx=1x(dydx)yx2=1xdydx(ux)

(dudx+ux)x=dydx

(xdudx+4)=1+421+4

xdudx=1+421+4u=1+424421+4

xdudx=(141+4)

(1+414)du=dxx

4114dx=dxx

=4+11114du=dxx

=(1214)du=dxx

u+2ln(1y)=ln(x)+c

u+2ln(14)=ln(x)+c

u=yx

yx=2ln(1yx)=ln(x)+c

y+2xln(1yx)=xln(x)+xc

2) y1=x+yx

y1=1+yx

yx=u(dydx)=4+xdudx

xdudx=1du=dxx

u=ln(x)+c

yx=ln(x)+cy=xln(x)+cx

3) wrong equation

4) (x2+y2)dx+2xydy=0

dydx=(x2+y2)2xy

dydx=(1+(yx)2)2(yx)

yx=udydx=u=xdudx

u=xdudx=(1+4224

xdudx=(1+42)244=14224224

xdudx=134224

241+342du=dxx

dt1+3t=dxx

13ln(1+3t)=ln(x)+ln(c)

13ln(1+3t)=+ln(Cx)

13ln(1+3x2)=ln(cx)

(1+3x2)1/3=(Cx)

5) x2dydx=x22y2+xy

dydx=12(yx)2+(yx)

yx=4dydx=4+xdydx

4+xdydx=12y2+4

xdydx=1242+0

dy1242=dxx

du1(24)2=dxx

24=+72du=d+

12d+1+2=dxx

=12[(1/21++(1/2)1+1)dt]=ln(x)+c

112[12ln(1+)+12ln(1+1)]=ln(x)+c

112[12ln(142)+12ln(1+42)]=ln(x)+c

112×12ln(1+42142)ln+c
12xln(x2+y2x2y2)=lnx+c

6) wrong question

7) [xcos(yx)+ysin(yx)]ydx=[ysin(yx)xcos(yx)]xdy
[cos(yx)+(yx)sin(yx)](yx)dx=[yxsin(yx)cos(yx)]dy
dydx=(yx)[cos(yx)+(yx)sin(yx)cos(yx)+(yx)sin(yx)]
yx=u=dydx=u+xdudx
y+xdydx=4[cosu+usinucosu+usinu]
sdydx=4[cosu+4sinuusinucosu1]
=4[cosu+usinuusinu+cos4usinucosu]
xdydx=2ucosuusinucosu
(usinucosuucosu)du=2dx
(tanu14)du=2dx
ln|secu|ln(u)=2x+c
ln(secuu)=2x+c
(sec(yx)(yx))=2x+c
ln(xsec(yx)y)=2x+c

8) xdydxy+xsin(yx)=0
dydxyx+sin(yx)=0
u=yxdydx=u+xdudx
dydx=yxsin(yx)
u+xdydx=usin(u)
xdydx=sinudydx=dxx
cosecudu=dxx
logcosecucotu=ln(x)+ln(c)
logln|cosucotu|=ln|xc|
(cosecucotu).x=c
x[cose(yx)cot(yx)]=c

9) ydx+xlog(yx)dy2xdy=0
(yxdx+[log(yx2]dy=0
dydx=(yx2log(yx)
yx=udydx=u+xdudx
u+xdydx=u2log(u)
xdydx=424+4logu2logu
=4+ulogu2logu
2logu4logu4du=dxx
2loguu(logu1)du=dxx
logu=+
14du=dt
2141dt=dxx
(+1141)dt=dxx
(111)dt=dxx
4ln(41)=ln(x)+c
logu=log(logu1)=ln(x)+c
log(yx)log(log(yx1)=ln(x)+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon