wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In the following table, a ratio is given in each column. Find the remaining two ratios in the column and complete the table.
sin θ
1161

12

35
cos θ 3537 13
tan θ 1 2120
815

122

Open in App
Solution


(i)
cosθ=3537

Now,

sin2θ+cos2θ=1sin2θ+35372=1sin2θ=1-12251369=1369-12251369=1441369sin2θ=12372sinθ=1237
tanθ=sinθcosθ=12373537=1235

(ii)
sinθ=1161

Now,

sin2θ+cos2θ=111612+cos2θ=1cos2θ=1-1213721=3721-1213721=36003721cos2θ=60612cosθ=6061
tanθ=sinθcosθ=11616061=1160

(iii)
tanθ=1sinθcosθ=11sinθ=k, cosθ=k
Now,

sin2θ+cos2θ=1k2+k2=12k2=1k2=12k=12
sinθ=k=12 and cosθ=k=12

(iv)
sinθ=12

Now,

sin2θ+cos2θ=1122+cos2θ=1cos2θ=1-14=4-14=34cos2θ=322cosθ=32
tanθ=sinθcosθ=1232=13

(v)
cosθ=13

Now,

sin2θ+cos2θ=1sin2θ+132=1sin2θ=1-13=3-13=23sin2θ=232sinθ=23=23
tanθ=sinθcosθ=2313=2

(vi)
tanθ=2120sinθcosθ=2120sinθ=21k, cosθ=20k
Now,

sin2θ+cos2θ=121k2+20k2=1441k2+400k2=1841k2=1k2=1841=1292k=1292=129
sinθ=21k=21×129=2129 and cosθ=20k=20×129=2029

(vii)
tanθ=815sinθcosθ=815sinθ=8k, cosθ=15k
Now,

sin2θ+cos2θ=18k2+15k2=164k2+225k2=1289k2=1k2=1289=1172k=1172=117
sinθ=8k=8×117=817 and cosθ=15k=15×117=1517

(viii)
sinθ=35

Now,

sin2θ+cos2θ=1352+cos2θ=1cos2θ=1-925=25-925=1625cos2θ=452cosθ=45
tanθ=sinθcosθ=3545=34

(ix)
tanθ=122sinθcosθ=122sinθ=k, cosθ=22k
Now,

sin2θ+cos2θ=1k2+22k2=1k2+8k2=19k2=1k2=19=132k=132=13
sinθ=k=13 and cosθ=22k=22×13=223

The complete table is given below:
sinθ 1237 1161 12 12 23 2129 817 35 13
cosθ 3537 6061 12 32 13 2029 1517 45 223
tanθ 1235 1160 1 13 2 2120 815 34 122

flag
Suggest Corrections
thumbs-up
14
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon