The correct option is D 25:24
From figure (a), capacitors are in parallel.
So,
C1=K1ϵ0(A/2)d+K2ϵ0(A/2)d
⇒C1=ϵ0A2d(K1+K2) .........(1)
From figure (b), capacitors are in series.
So,
1C2=1K1ϵ0A(d/2)+1K2ϵ0A(d/2)
⇒1C2=12K1ϵ0Ad+12K2ϵ0Ad
⇒C2=2ϵ0Ad(K1K2K1+K2) .......(2)
From eq. (1) & (2)
C1C2=ϵ0A(K1+K2)2d2ϵ0Ad(K1K2K1+K2)
⇒C1C2=(K1+K2)24K1K2=(2+3)24×2×3
⇒C1C2=2524=25:24
Hence, option (d) is correct.