Given:∠ABC=100o
We know that, ∠ABC+∠ADC=180o (The sum of opposite angles in a cyclic quadrilateral =180o)
∴100o+∠ADC=180o
∠ADC=180o−100o
∠ADC=80o
Join OA and OC, we have a isosceles Δ OAC,
∵OA=OC (Radii of a circle)
∴ ∠AOC=2×∠ADC (by theorem)
or ∠AOC=2×80o=160o
In ΔAOC,
∠AOC+∠OAC+∠OCA=180o
160o+∠OCA+∠OCA=180o[∵∠OAC=∠OCA]
2∠OCA=20o
∠OCA=10o
∠OCA+∠OCD=40o
10o+∠OCD=40o
∴ ∠OCD=30o
Hence, ∠OCD+∠DCT=∠OCT
∵∠OCT=90o
(The tangent at a point to circle is ⊥ to the radius through the point to constant)
30o+∠DCT=90o
∴ ∠DCT=60o.