The correct option is D 12 and −4
Suppose x−35=8−y4=3(x+y)8=k
∴x+35=k⇒x=5k−3 .......(i)
8−y4=k
⇒y=8−4k ....(ii)
and 3(x+y)8=k
⇒3(x+y)=8k ......(iii)
On substituting the value of x and y from equation (i) and (ii) in equation (iii),
3(5k−3+8−4k)=8k
⇒3k+15=8k⇒5k=15∴k=155=3
On substituting this value of k in equation (i) and (ii),
x=5×3−3=12
and y=8−4×3=−4.