Given, AD bisects
∠BAC∠BAD∠DAC=13
Let ∠BAD=k and ∠DAC=3k
Now, ∠BAC+∠EAC=180 (liner pair)
∠BAD+∠DAC+∠EAC=180
3k+k+108=180
4k=72
k=18
In △BAD
Since, AD=BD, ∠DBA=∠DAB=18 (Isosceles triangle property)
In △ABC,
∠EAC=∠ABC+∠ACB (Exterior angle property)
108=18+x∘
x=90∘