In the given fig. θ ABC is an equilateral triangle inscribed in a circle of radius 4 cm and centre O. Show that the area of the shaded region is 43(4π−3√3) cm2. [4 MARKS]
Concept: 1 Mark
Application: 3 Marks
In ΔOBD Let BD = a, OB = 4cm, sin 60∘=BDOB
a=4√32=2√3 cm
BC=2a=4√3
OD=4 cos 60∘=2 cm
∴ Area of shaded region = Area of sector OBPC - Area of ΔOBC
120360×π×42−0.5×4√3×2
43[4π−3√3] cm2