In the given figure, 3 secants are drawn from point P, intersects the circle at Q, M, and R respectively. What is the value of ∠QXR?
100∘
In ΔQMP,
∠MQP+∠QMP+∠MPQ=180∘ [Sum of angles of a trianlge is 180∘]
⇒ ∠MQP+30∘+40∘=180∘∠MQP+70∘=180∘∠MQP=180∘−70∘∠MQP=110∘=∠MQX
In the quadrilateral QXMA, sum of interior angles of a quadrialateral = 360∘
∠MQX+∠QXZ+∠XZM+∠ZMQ=360∘
110∘+∠QXZ+120∘+30∘=360∘260∘+∠QXZ=360∘∠QXZ=360∘−260∘∠=QXZ=∠QXR=100∘