In the given figure, a circle inscribed in a triangle ABC, touches the sides AB, BC and AC at points D, E and F respectively. If AB = 12 cm, Bc = 8 cm and AC = 10 cm, find the lengths fo AD, BE and CF.
Let AD = x, so, BD = 12 - z
BE =x, so, EC = 8-x
CF = y, so Af = 10 -y
BD = BE
CE = CF
AD = AF
ie, 12-z = x
= x + z = 12 .. . . . . . .. . . 1
8-x = y
=y+x = 8 . .. . . . . . .. . . . 2
10-y = z
z + y = 10 .. . . .. . . . . . . .3
Adding x, y and z
x + y + z = 12 -z + 8- x +10 -y
= 2( x+ y + z) = 30
x + y + z = 15 . . .. . . . .. . . .4
Now subtract 1 from 4
x + y+ z - ( x + z) = 15-12
y = CF = 3
Subtract 2 from 4
x + +y +z - (y+x) = 15-8
z = AD = 7
Subtract 3 from 4
x + y+ z -(z +y) = 15 - 10
x = BE = 5
Therfore, AD = 7, BE = 5 and CF = 3