In the given figure, a square OABC is inscribed in a quadrant OPBQ of a circle. If OA = 20 cm, find the area of the shaded region [ Use π = 3.14.]
S
In ΔOAB,
\({OB} ^{2} = {OA}^{2} + {AB}^{2}
= {20}^{2} + {20}^{2} \)
OB = 20√2
Radius (r) of circle = OB = 20√2
Area of quadrant OPBQ =\90∘360∘×3.14×(20√2)2
14×3.14×800=628cm2
Area of OABC = Side2=202=400cm2
Area of shaded region = Area of quadrant OPBQ − Area of OABC
=(628−400)cm2→228cm2