In Δ ABC,
∠ BAC+∠ ACB+∠ ABC=180∘
48∘+∠ ACB+∠ ABC=180∘
But ∠ ACB=∠ ABC(∵ Given,AB=AC and angles opposite to equal sides of a triangle are equal). (1 mark)
∴2∠ ABC=180∘−48∘
i.e.,∠ ABC=66∘...(i)
⇒∠ ACB=66∘
⇒∠ ACD+∠ DCB=66∘
⇒∠ DCB=66∘−18∘
(∵∠ ACD=18∘)
⇒∠ DCB=48∘...(ii) (1 mark)
Now, in Δ DCB,
∠ DBC=66∘
(from (i),as∠ DBC=∠ ABC)
∠ DCB=48∘ (from (ii))
∴∠ BDC=180∘−48∘−66∘=66∘
⇒∠BDC=∠DBC
Then, BC = CD (sides opposite to equal angles are equal) (1 mark)