In the given figure, AB = AC. OB and OC bisect ∠ABC and ∠ACB respectively. If ∠BAC=40∘, then ∠BOC=
110∘
(i) ΔABC is isosceles ..... (given, AB = AC)
(ii) ∠ABC=∠ACB=180∘−40∘2 ..... (Sum of angles of a Δ)
=140∘2
=70∘
(iii) ∠ABO=∠OBC=35∘ ..... (BO bisects ∠ABC)
(iv) ∠ACO=∠OCB=35∘ ..... (CO bisects ∠ACB)
(v) In ΔBOC
∠BOC+35∘+35∘=180∘ ..... (Sum of angles of a Δ)
∠BOC=180∘−70∘
=110∘