In the given figure, AB and CD are straight lines through the centre O of a circle. If ∠AOC=80∘ and ∠CDE=40∘ , find (i) ∠DCE, (ii) ∠ABC.
(i)
∠CED=90∘ (Angle in a semi circle)
In ΔCED, we have:
∠CED+∠EDC+∠DCE=180∘ (Angle sum property of a triangle)
⇒90∘+40∘+∠DCE=180∘
⇒∠DCE=(180–130)=50∘
∴∠DCE=50∘.... ...(i)
(ii)
As ∠AOC and ∠BOC are linear pair,
we have: ∠BOC=(180∘–80∘)=100∘........(ii)
In ΔBOC, we have:
∠OBC+∠OCB+∠BOC=180∘ (Angle sum property of a triangle)
∠ABC+∠DCE+∠BOC=180∘ [Since, ∠OBC=∠ABC and ∠OCB=∠DCE]
∠ABC=180∘–(∠BOC+∠DCE)
∠ABC=180∘–(100∘+50∘) [From (i) and (ii)]
⇒ ∴∠ABC=(180∘−150∘)=30∘