(i) From ΔABC and ΔDEC,
∠ABC=∠DEC=90∘ (Given)
and ∠ACB=∠DCE= Common
∴ ΔABC∼ΔDEC (By A−A similarity)
(ii) In ΔABC and ΔDEC,
ΔABC∼ΔDEC (proved in (i) part)
∴ABDE=ACCD
Given: AB=6 cm,DE=4 cm,AC=15 cm,
∴64=15CD
⇒6×CD=15×4
⇒CD=606
⇒CD=10 cm.
(iii) Area of ΔABCArea of ΔDEC=AB2DE2 (∵ΔABC∼ΔDEC)
=(6)2(4)2=3616=94
∴ Area of ΔABC: Area of ΔDEC=9:4.