In the given figure; AB =BC and AD = EC. Prove that : BD = BE.
In ΔABC,
AB = BC (given)
⇒ ∠BCA = ∠BAC (Angles opposite to equal sides are equal)
⇒ ∠BCD = ∠BAE ….(i)
Given, AD = EC
⇒ AD + DE = EC + DE (Adding DE on both sides)
⇒ AE = CD ….(ii)
Now, in triangles ABE and CBD,
AB = BC (given)
∠BAE = ∠BCD [From (i)]
AE = CD [From (ii)]
ΔABE ≅ ΔCBD
BE = BD (cpct)