The correct option is A ∠BCD=80∘
In △ABC,
AB=AC
Hence, ∠BAC=∠BCA=25∘ (isosceles triangle property)
Sum of angles =180
∠BAC+∠BCA+∠ABC=180
25+25+∠ABC=180
∠ABC=130∘
Now, ∠CBD=180−∠ABC
∠CB=180−130=50∘
In △CBD,
BC=CD
∠CBD=∠CDB (Isosceles triangle property)
Sum of angles =180
∠CBD+∠CDB+∠BCD=180
∠BCD=180−50−50
∠BCD=80∘