In the given figure, AB || PQ. Find the values of x and y.
Given, AB∥PQ.
Let CD be the transversal cutting AB and PQ at E and F, respectively.
Then,
Since CD is a straight line
∠CEB + ∠BEG + ∠GEF = 180°
⇒ 75° + 20° + ∠GEF = 180°
⇒ ∠GEF = 85°
We know that the sum of angles of a triangle is 180°.
∴ ∠GEF + ∠EGF + ∠EFG = 180
⇒ 85°+ x + 25° = 180°
⇒ 110° + x = 180°
⇒ x = 70°
And
∠FEG + ∠BEG = ∠DFQ [Corresponding Angles]
⇒ 85° + 20° = ∠DFQ
⇒ ∠DFQ = 105°
∠EFG + ∠GFQ + ∠DFQ = 180° [Since CD is a straight line]
⇒ 25° + y+ 105° = 180°
⇒ y = 50°
∴ x = 70° and y = 50°