Question
In the given figure, ABC and BDE are two equilateral triangles such that D is the mid-point of BC. AE intersects BC in F. Prove that
(i) ar (Δ BDE) = ar (Δ ABC)
(ii) ar (Δ BDE) = ar (Δ BAE)
(iii) ar (Δ BFE) =ar (Δ AFD)
(iv) ar (ΔABC) = 2 ar (Δ BEC)
(v) ar (Δ FED) = ar (Δ AFC)
(vi) ar (Δ BFE) = 2 ar (EFD)