In the given figure, ABC is a triangle, DE is parallel to BC and ADDB=32 (i) Determine the ratios ADABandDEBC. (ii) Prove that ΔDEF is similar to ΔCBF Hence, find EFFB. (iii) What is the ratio of the areas of ΔDFEandΔBFC? [4 MARKS]
Open in App
Solution
Application of theorems: 2 Marks Calculation: 2 Marks
Proof: In ΔADE and ΔABC, ∠A=∠A[common]∠1=∠2[Correspondingangles]So,ΔADE∼ΔABC[AAsimilarity]HenceADAB=DEBC=AEAC(i)GivenADDB=32LetAD=3x.DB=2xSo,ADAB=ADAD+DB=3x3x+2x=3x5x=35Now,ADAB=DEBCSo,DEBC=35
(ii) In ΔDEF and ΔCBF, ∠3=∠4[Verticallyoppositeangles]∠5=∠6[Alternateinteriorangles]So,ΔDEF∼ΔCBF[AAsimilarity]HenceDEBC=EFBF=DFCFNow,DEBC=EFFBSo,EFFB=35[∵DEBC=35](iii)ar(ΔDEF)ar(ΔBCF)=DE2BC2=(35)2=925