wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

In the given figure, ABCD is a parallelogram. Points P and Q on BC trisect BC.
Prove that :
i) ar(ΔAPR)=ar(ΔDRQ)
ii) ar(ΔDPQ)=16ar(ABCD)
iii) ar(ARPB)=ar(DRQC)
1116243_0511b7f538e04183a9b883777d9be627.png

Open in App
Solution

BP=PQ+QC=13BC
ABCD is a parallelogram.
(i) ar(APR)=ar(DRQ).
ina parallellogram, triangle inscribed with the
same bak have equal access.
ar(APD)=ar(AQD)
ar(ARD)+ar(APR)=ar(ARD)+ar(QRD)
ar(APR)=ar(DRQ).....(1)
(DPQ)12×h×(PQ)=12×hr(BC3)
h=height of parallelogram.
ar(DPQ)(h×BC)6
area of parallellogram ABCD=(h×BC)
ar(DPQ)16×ar(ABCD)
(iii) ar(ABP)=12×h×PB=12×h×BC3=16(h×BC)
ar(DQC)12×h×(QC)=12×h×BC3=16(h×BC)
ar(ABP)=16(h×BC)=ar(DQC)
ar(ABP)=ar(DQC)....(3)
add (1) and (3)
ar(ABP)ar(APR)=ar(DQC)+ar(DQR)
ar(ARPB)=ar(DRQC)

1074109_1116243_ans_8774765b79c543abb5f440a0858f6b19.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
A Parallelogram and a Triangle between the Same Parallels_video tackle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon