In the given figure, ABCD is a parallelogram with x : y = 1 : 1 and OE || AD. Then, (area of ΔADC + area of ΔBOC) : area of ΔODC is
None of the above
Given, ABCD is a parallelogram with x : y = 1 : 1
i.e. x = y
Also, OE || AD
⇒ OE || BC
Now, in ΔCAD and ΔCOE,
OE || AD
∴∠COE=∠CAD
and ∠CEO=∠CDA [corresponding angles]
⇒ΔCAD∼ΔCOE [by AA similarity]
⇒CECD=COCA
⇒yx+y=COCA ...(i)
Similarly, ΔDOE∼ΔDBC
⇒xx+y=DODB ...(ii)
From Eq. (i),
Area of ΔCOEArea of ΔCAD=(y)2(x+y)2⇒Area of ΔCADArea of ΔCOE=(x+y)2(y)2⇒Area of ΔCADArea of ΔCOE−1=(x+y)2(y)2−1⇒Area of trapezium OEDAArea of ΔCOE=x2+2xyy2⇒Area of trapezium OEDAArea of ΔCOE=x2+2x2x2 [∵x=y]=3x2x2=31⇒Area of trapezium OEDA=3 Area of ΔCOE...(iii)
From Eq. (ii),
Area of trapezium OECB=3 Area of ΔOED...(iv)
On adding Eqs. (iii) and (iv), we get
Area of trapezium OEDA+Area of trapezium OECB=3(Area of ΔCOE+Area of ΔOED)⇒Area of ΔADC+Area of ΔBOC=3 Area of ΔODC
⇒ Area of ΔADC + Area of ΔBOCArea of ΔODC = 31