In the given figure, ABCD is a quadrilateral.
If AB=30cm,, AD=18cm,, BD=24cm,, DC=26cm and ∠DBC=90∘,
then the area of quadrilateral ABCD =
336
△ABD
S=(18+30+242)
=36cm
△=√S(S−a)(S−b)(S−c)
=√36(36−24)(36−18)(36−30)
=√(36)(12)(18)(6)
=√62×6×2×18×6
=√62×62×62
=216cm2
△BDC
BC2=DC2−DB2
=262−242
=102
BC=10cm
△DBC=12×DB×BC
=/1/2×/2412×10
=120cm2 ABCD
= 216+120
= 336cm2
Hence (C)