ABCD is a rhombus with ∠A=67o & ΔDEC is an equilateral triangle.
So DE= EC = CD & ∠DEC=∠ECD=∠CDE=60o
Also EC = CD = CB ...[ Since all sides of the rhombus are equal
Now, ∠A=∠BCD ...[Opposite angles are equal in a rhombus]
So ∠ECB=∠ECD+∠BCD⇒∠ECB=67o+60o⇒∠ECB=127o
Since EC = CB, so △ECB is isosceles triangle.
In △ECB,
∠ECB+∠BEC+∠CBE=180o⇒2∠CBE+127=180
{Base angles in isosceles triangle are equal ⇒∠CEB=∠CBE]
⇒2∠CBE=180−127⇒2∠CBE=53
⇒∠CBE=532⇒∠CBE=26.5o
In isosceles △DAB,∠ADB=∠ABD
[Base angles in isosceles triangle are equal
Again in isosceles △DAB,∠ADB+∠ABD+∠BAD=180o
⇒2∠ABD=180−67⇒2∠ABD=113o
⇒∠ABD=56.5o
In rhombus ABCD, adjacent angles are supplementary,
∴∠DAB+angleABC=180o⇒∠ABC=180−67⇒∠ABC=113o
So ∠DBE=∠ABC−∠ABD−∠CBE
⇒∠DBE=113o−56.5o−26.5o
⇒∠DBE=113o−83 ⇒∠DBE=30o