In the given figure, ABCDE is a pentagon inscribed in a circle. If AB = BC = CD, ∠BCD=110o and ∠BAE=120o, find : (i) ∠ABC (ii) ∠CDE (iii) ∠AED (iv) ∠EAD
A
(i) ∠ABC=110o (ii) ∠CDE=95o (iii) ∠AED=105o (iv) ∠EAD=50o
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(i) ∠ABC=100o (ii) ∠CDE=95o (iii) ∠AED=105o (iv) ∠EAD=50o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(i) ∠ABC=110o (ii) ∠CDE=95o (iii) ∠AED=125o (iv) ∠EAD=50o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(i) ∠ABC=110o (ii) ∠CDE=95o (iii) ∠AED=105o (iv) ∠EAD=60o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A (i) ∠ABC=110o (ii) ∠CDE=95o (iii) ∠AED=105o (iv) ∠EAD=50o oin BD, BE From isosceles △BCD we get ∠CBD=∠CDB=12(180∘−110∘)=12×70∘=35∘ From the cyclic quadrilateral ABDE ∠BDE=180∘−∠BAE=180∘−120∘=60∘ From the cyclic quadrilateral BCDE ∠BED=180∘−110∘=70∘ ArcAB=ArcBC=∠AEB=∠BDC=35∘ Sum of all the interior angles of a Pentagon =(2×5−4)rt.∠s=6×90∘=540∘ (i) ∠ABC=540∘−(110∘+35∘+60∘+70∘+35∘+120∘)=540∘−430∘=110∘ (ii) ∠CDE=∠CDB+∠BDE=35∘+60∘=95∘ (iii) ∠AED=∠AEB+∠BED=35∘+70∘=105∘ (iv) ∠EAD=∠EBD=180∘−(70∘+60∘)=180∘−130∘=50∘