In the given figure, AC=3AD,3BC=4EC,BF=15BD, if FG is the median of ΔEFD, then ar(ΔFGD) is equal to
115 ar(Δ ABC)
Let BJ⊥AC. Given that AC = 3AD. ⇒DC=AC−AD=3AD−AD (Given)=2AD⇒DC=23 AC ...(i) (∵ AD=13AC)Also, 3BC=4EC⇒3BC=4(BC−BE)⇒4BE=BC⇒BE=14 BCAnd, BF=15BD⇒FD=45BDGE=GD=12ED (∵ FG is the median)Ar(ΔBDC)=12×DC×BJand, Ar(ΔABC)=12×AC×BJ∴Ar(ΔBDC)Ar(ΔABC)=DCAC=23 [from (i)]⇒Ar(ΔBDC)=23Ar(ΔABC).(ii)Similarly, BE=14BC∴Ar(ΔBED)=14Ar(ΔBDC)..(iii)and, FD=45BD∴Ar(ΔFED)=45Ar(ΔBED).(iv)and, GD=12ED∴Ar(ΔFGD)=Ar(ΔFED)…..(v) From (ii), (iii), (iv) and (v), we getAr(ΔFGD)=(12×45×14×23)Ar(ΔABC)=115Ar(ΔABC)
Hence, the correct answer is option (b).