wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In the given figure, AC=3AD,3BC=4EC,BF=15BD, if FG is the median of ΔEFD, then ar(ΔFGD) is equal to



A

127 ar(Δ ABC)

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

115 ar(Δ ABC)

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C

340 ar(Δ ABC)

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

45 ar(Δ ABC)

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B

115 ar(Δ ABC)


Let BJAC. Given that AC = 3AD. DC=ACAD=3ADAD (Given)=2ADDC=23 AC ...(i) ( AD=13AC)Also, 3BC=4EC3BC=4(BCBE)4BE=BCBE=14 BCAnd, BF=15BDFD=45BDGE=GD=12ED ( FG is the median)Ar(ΔBDC)=12×DC×BJand, Ar(ΔABC)=12×AC×BJAr(ΔBDC)Ar(ΔABC)=DCAC=23 [from (i)]Ar(ΔBDC)=23Ar(ΔABC).(ii)Similarly, BE=14BCAr(ΔBED)=14Ar(ΔBDC)..(iii)and, FD=45BDAr(ΔFED)=45Ar(ΔBED).(iv)and, GD=12EDAr(ΔFGD)=Ar(ΔFED)..(v) From (ii), (iii), (iv) and (v), we getAr(ΔFGD)=(12×45×14×23)Ar(ΔABC)=115Ar(ΔABC)

Hence, the correct answer is option (b).


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon