The correct option is
A True
Given:∠ACB=74∘ .....(1)
∠ACB+∠ACD=180∘ since BCD is a straight line.
⇒74∘+∠ACD=180∘
⇒∠ACD=180∘−74∘=106∘ .....(2)
In △ACD,
∠ACD+∠ADC+∠CAD=180∘
Given that AC=CD
∠ADC=∠CAD
⇒106∘+∠CAD+∠CAD=180∘ from (2)
⇒2∠CAD=180∘−106∘=74∘
⇒∠CAD=37∘=∠ADC ......(3)
Now,Given:∠BAD=110∘
∠BAC+∠CAD=110∘
∠BAC+37∘=110∘
∠BAC=110∘−37∘=73∘ ......(4)
In △ABC,
∠B+∠BAC+∠ACB=180∘ from (1) and (4)
∠B+73∘+74∘=180∘
∠B+147∘=180∘
∠B=180∘−147∘=33∘ ........(5)
∴∠BAC>∠B from (4) and (5)
⇒BC>AC
But AC=CD(given)
⇒BC>CD
Hence the given statement is true.