In
△ABC,⇒ AB=AC [ Given ]
⇒ ∠ABC=∠ACB [ Base angles of equal sides are also equal. ]
⇒ ∠ABC=75o
∴ ∠ACB=75o
⇒ ∠ABC+∠ACB+∠BAC=180o
⇒ 75o+75o+x=180o
⇒ 150o+x=180o
⇒ x=30o.
It is given that, AC bisects ∠A
∴ ∠BAC=∠CAD
∴ ∠CAD=30o
In △ACD,
⇒ AD=CD [ Given ]
⇒ ∠CAD=∠ACD [ Base angles of equal sides are also equal. ]
∴ ∠ACD=30o
⇒ ∠CAD+∠ACD+∠CDA=180o
⇒ 30o+30o+y=180o
⇒ 60o+y=180o
⇒ y=120o
∴ The value of x and y are 30o and 120o.