In△ABD
AB2=BD2+AD2−−−−−(1)
In△AOC
AC2=AD2+DC2−−−−−(2)
Subtract (1) from (2)
AC2–AB2=AD2+CD2–BD2–AD2
AC2–AB2=CD2–BD2−−−−−(3)
Given BD=3CD
And from figure BD+DC=BC
⟹3CD+DC=BC
⟹CD=BC4
⟹BD=3BC4
Put in (3), we get
AC2–AB2=BC216−9BC216=−8BC16=−BC22
⟹2AC2–2AB2=−BC2
⟹2AB2=2AC2+BC2