Given ABC is a triangle and AD⊥BC.
To prove : 2CA2−2.AB2+BC2
proof : BD+CD=BC
13.CD+CD=BC
CD+3CD=3.BC
4CD=3BC
CD=34.BC⋯(1)
From (1)
BD=34.BC
BD=BC4⋯(2)
In △ACD,
AC2=AD2+DC2⋯(3)
In △ADB,
AB2=AD2+BD2
AD2=AB2−BD2⋯(4)
put (4) in (1)
AC2=AB2−BD2+DC2
AC2=AB2−(BC4)2+(34.BC)2
AC2=AB2−BC216+9.BC216
AC2=AB2+−BC2+9BC216
AC2=AB2+8.BC216
AC2=AC2=2.AB2+BC22
∴2AC2=2AB2+BC2
Hence it proved.