The correct option is D 34 cm
In △ABD and △ACD
AD=AD (common side in both triangles)
BD=CD (AD bisect BC)
∠ADB=∠ADC (AD perpendicular to BC so both angles are equal to 90o)
So, △ABD≅△ACD (SAS property)
We know that corresponding sides of congruent triangles are equal.
⇒ AB=AC
As perimeter of triangle is 36 cm,
So, AB+BC+AC=36
2AB+10=36 (∵ Put AB=AC, BC=10)AB=36−102AB=262AB=13 cm
Now, In △ABD as ∠ADB=90o
applying pythagoras theorem,
AB2=BD2+AD2
AD2=AB2−BD2
AD2=132−52 (∵ BD=BC2 as AD bisect BC)
AD2=169−25
AD2=144
AD=√144
AD=12 cm
Now, 2AD+BC=2×12+10
2AD+BC=24+10
2AD+BC=34 cm
So, option (d) correct.