(Exterior Angle Theorem).
Therefore, m∠CAD=∠B+∠C2 (since AD is an angle bisector)
m∠BAD=∠A+∠B+∠C2=2∠A+∠B+∠C2=∠A+1802=∠A2+90
m∠ADB=180−(∠B+∠BAD)=180−(∠B+∠A+∠B+∠C2)=180−∠A−3∠B+∠C2
Now, in △ABD, applying Sine rule,
BDsin(∠BAD)=ABsin(∠ADB)
BDsin(90+∠A2)=ABsin(∠ADB)
BDAB=cos(∠A2)sin(∠ADB) .....(1)
In △ACD, applying Sine rule,
CDsin(∠CAD)=ACsin(∠ADB)
CDsin(∠B+∠C2)=ACsin(∠ADB)
CDAC=sin(180−∠A2)sin(∠ADB)=cos(∠A2)sin(∠ADB) .....(2)
From (1) and (2), we get
BDAB=CDAC
⇒BDCD=ABAC
Hence proved.