In the given figure, AE and BD are two medians of a △ABC meeting at F. The ratio of the area of △ ABF to the area of the quadrilateral FDCE is:
1:1
Area (△ ABD) = 12 (area △ ABC),
Area (△ AEC) = 12 (area △ ABC),
∴ area ( △ ABD) = area (△ AEC)
⇒ area ( △ ABD) - area (△ AFD)
= area (△ AEC) - area (△ AFD)
⇒ area (△ ABF) = area (quad. FDCE).