In the given figure, AE and BD are two medians of a △ABC meeting at F. The ratio of the area of △ABF to the area of the quadrilateral FDCE is
1:1
area △ABD=12(area △ABC)
area △AEC=12(area △ABC)
∴area △ABD=area △AEC
⇒area △ABD−area △AFD=area △AEC−area △AFD
⇒area △ABF=area (quadrilateral FDCE)
So, the ratio of the area of △ABF to the area of the quadrilateral FDCE is 1:1