In the given figure, AE and BD are two medians of △ABC meeting at F. The ratio of the area of △ABF and the quadrilateral FDCE is:
1:1
Area (△ABD) = 12 (area △ABC),
Area (△AEC) = 12 (area △ABC),
∴ area ( △ABD) = area (△AEC)
⇒ area ( △ABD) - area (△AFD)
= area (△AEC) - area (△AFD)
⇒ area (△ABF) = area (quad. FDCE).