In the given figure, ∠A=60∘ and ∠ABC=80∘, then ∠DPC and ∠BQC are respectively
40∘,20∘
In a cyclic quadrilateral, exterior angle is equal to opposite interior angle.
So, in cyclic quadrilateral ABCD, we have,
∠PDC=∠ABC and ∠DCP=∠A
∠PDC=80∘ and ∠DCP=60∘ [Given, ∠ABC=80∘ and ∠A=60∘ ]
In ΔDPC, we have
∠DPC=180∘−(∠PDC+∠DCP)
⇒∠DPC=180∘−(80∘+60∘)=40∘
Similarly, we have
∠QBC=∠ADC and ∠BCQ=∠BAD
[∠ADC+∠ABC=180∘ (Opposite angle sum of cyclic quadrilateral), ∠ABC=80∘ and ∠A=60∘]
∠QBC=180∘−∠ABC
∠QBC=180∘−80∘=100∘ and ∠BCQ=∠BAD=60∘
Now, in ΔBQC, we have
∠BQC=180∘−(∠QBC+∠BCQ)
⇒∠BQC=180∘−(100∘+60∘)=20∘