In the given figure, ∠A=70∘ and ∠ABC=50∘ , find ∠DPC and ∠BQC.
20o
In a cyclic quadrilateral, exterior angle is equal to opposite interior angle. So, in a cyclic quadrilateral ABCD, we have,
∠PDC=∠ABC
and ∠DCP=∠A
∠PDC=50∘ and ∠DCP=70∘[∠ABC=50∘ and ∠A=70∘]
In ΔDPC, we have
∠DPC=180∘−(∠PDC+∠DCP)
⇒∠DPC=180∘−(70∘+50∘)=60∘
Similarly, we have
∠QBC=∠ADC and ∠BCQ=∠A
[∠ADC+∠ABC=180∘,∠ABC=50∘ and ∠A=70∘]
∠QBC=180∘−∠ABC
∠QBC=180∘−50∘=130∘ and ∠BCQ=70∘
Now, in ΔBQC, we have
∠BQC=180∘−(∠QBC+∠BCQ)
⇒∠BQC=180∘−(100∘+70∘)=10∘