In the given figure, ∠ABC = 65° and ∠ACB = 33°. If AM ⊥ BC and AN is the bisector of ∠A, then ∠MAN = __.
16∘
In Δ ABC––––––––––––
∠BAC+65∘+33∘=180∘...(Sum of angle of a Δ)
∠BAC=180−98∘
= 82∘
(ii) ∴∠BAN=∠NAC=82∘2=41∘
(iii) In Δ ANC––––––––––––
∠ANM=41∘+33∘... (exteriar angle theorem)
= 74∘
(iv) In Δ AMN
∠MAN+90∘+74∘=180∘ (Sum of Ls of a Δ)
∠MAN=180−164∘
=16∘
Aid to memory ∠MAN=12(65∘−33∘)