In the given figure, ∠ABC=∠AED=90∘, AB = 12 cm, AC = 15 cm and DE = 3 cm. The area of ΔABC and ΔAED are ___ and ___ respectively.
54 cm2, 6 cm2
In ΔABC,
AC2=AB2+BC2 (by Pythagoras theorem)
⇒BC2=(15)2−(12)2
⇒BC=225−144=81
⇒ BC = 9 cm
Area of △ABC=12×BC×AB
=12×9×12=54 cm2
In ΔAED and ΔABC,
∠ABC=∠AED=90∘ (given)
∠BAC=∠DAE
(common angle in both the triangles)
∴ΔAED ∼ ΔABC (by AA similarity criterion)
⇒ar(ΔADE)ar(ΔABC)=ED2BC2
⇒ar(ΔADE)54=3292 [∵ ar(ΔADE=54 cm2)]⇒ar(ΔADE)=981×54=6 cm2