In the given figure, angle ACP=∠BDP=90o,AC=12m,BD=9m and PA=PB=15m. Find (i) CP (ii) PD (iii) CD
Open in App
Solution
It is given that ACP=∠BDP=90° AC=12m BD=9m PA=PB=15m (i) In the right angled triangle ACP AP2=AC2+CP2 Substituting the values 152=122+CP2 By further calculation 225=144+CP2 CP2=225–144=81 So we get CP=√81=9m (ii) In the right angled triangle BPD PB2=BD2+PD2 Substituting the values 152=92+PD2 By further calculation 225=81+PD2 PD2=225–81=144 So we get PD=√144=12m (iii) We know that CP=9m PD=12m So we get CD=CP+PD Substituting the values CD=9+12=21m