find : AC2−AB2−BC2+2BC−BD..........(1)
from triangle ABD
AB2=AD2+BD2
AD2=AB2−BD2
and from triangle ADC
AC2=AD2+DC2
AD2=AC2−DC2.........(2)
from eq (1) and (2)
AB2−BD2=AC2−DC2
DC2−BD2=AC2−AB2........(3)
Put value of eq (3) in eq (1)
DC2−BD2−BC2+2BC.BD
⇒(BC−BD)2−(BC−DC)2−BC2+2BC.BD
(∴DC=BC−BD;BD=BC−DC)
⇒BC2+BD2−2BC.BD−BC2−DC2+2BC.DC−BC2+2BC.BD
⇒(BC−DC)2+2BC.DC−DC2−BC2(∴BD=BC−DC)
⇒BC2+DC2−2BC.DC+2BC.DC−DC2−BC2
⇒0 hence proved.